Killing forms on symmetric spaces
نویسندگان
چکیده
منابع مشابه
Dirichlet forms on symmetric spaces
© Annales de l’institut Fourier, 1973, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichie...
متن کاملKilling Forms on Toric Sasaki - Einstein Spaces ∗
We summarize recent results on the construction of Killing forms on SasakiEinstein manifolds. The complete set of special Killing forms of the Sasaki-Einstein spaces are presented. It is pointed out the existence of two additional Killing forms associated with the complex holomorphic volume form of Calabi-Yau cone manifold. In the case of toric Sasaki-Einstein manifolds the Killing forms are ex...
متن کاملComplex Forms of Quaternionic Symmetric Spaces
Some years ago, H. A. Jaffee found the real forms of Hermitian symmetric spaces ([J1], [J2]; or see [HÓ]). That classification turns out to be related to the classification of causal symmetric spaces. This was first observed by I. Satake ([S, Remark 2 on page 30] and [S, Remark on page 87]). Somewhat later, it was independently observed by J. Hilgert, G. Ólafsson and B. Ørsted; see [HÓ], especi...
متن کاملLOGARITHMIC DIFFERENTIAL FORMS ON p-ADIC SYMMETRIC SPACES
We give an explicit description in terms of logarithmic differential forms of the isomorphism of P. Schneider and U. Stuhler relating de Rham cohomology of p-adic symmetric spaces to boundary distributions. As an application we prove a Hodgetype decomposition for the de Rham cohomology of varieties over p-adic fields which admit a uniformization by a p-adic symmetric space.
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2006
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2005.09.007